Pengertian Optik Secara Detail

Tabel Opticks, 1728 Cyclopaedia
Optik / Optika

Optika adalah cabang fisika yang menggambarkan perilaku dan sifat cahaya dan interaksi cahaya dengan materi. Optika menerangkan dan diwarnai oleh gejala optis. Kata optik berasal dari bahasa Latin ὀπτική, yang berarti tampilan.

Bidang optika biasanya menggambarkan sifat cahaya tampak, inframerah dan ultraviolet; tetapi karena cahaya adalah gelombang elektromagnetik, gejala yang sama juga terjadi di sinar-X, gelombang mikro, gelombang radio, dan bentuk lain dari radiasi elektromagnetik dan juga gejala serupa seperti pada sorotan partikel muatan (charged beam). Optik secara umum dapat dianggap sebagai bagian dari keelektromagnetan. Beberapa gejala optis bergantung pada sifat kuantum cahaya yang terkait dengan beberapa bidang optika hingga mekanika kuantum. Dalam prakteknya, kebanyakan dari gejala optis dapat dihitung dengan menggunakan sifat elektromagnetik dari cahaya, seperti yang dijelaskan oleh persamaan Maxwell.

Bidang optika memiliki identitas, masyarakat, dan konferensinya sendiri. Aspek keilmuannya sering disebut ilmu optik atau fisika optik. Ilmu optik terapan sering disebut rekayasa optik. Aplikasi dari rekayasa optik yang terkait khusus dengan sistem iluminasi (iluminasi) disebut rekayasa pencahayaan. Setiap disiplin cenderung sedikit berbeda dalam aplikasi, keterampilan teknis, fokus, dan afiliasi profesionalnya. Inovasi lebih baru dalam rekayasa optik sering dikategorikan sebagai fotonika atau optoelektronika. Batas-batas antara bidang ini dan "optik" sering tidak jelas, dan istilah yang digunakan berbeda di berbagai belahan dunia dan dalam berbagai bidang industri.

Karena aplikasi yang luas dari ilmu "cahaya" untuk aplikasi dunia nyata, bidang ilmu optika dan rekayasa optik cenderung sangat lintas disiplin. Ilmu optika merupakan bagian dari berbagai disiplin terkait termasuk elektro, fisika, psikologi, kedokteran (khususnya optalmologi dan optometri), dan lain-lain. Selain itu, penjelasan yang paling lengkap tentang perilaku optis, seperti dijelaskan dalam fisika, tidak selalu rumit untuk kebanyakan masalah, jadi model sederhana dapat digunakan. Model sederhana ini cukup untuk menjelaskan sebagian gejala optis serta mengabaikan perilaku yang tidak relevan dan / atau tidak terdeteksi pada suatu sistem.

Di ruang bebas suatu gelombang berjalan pada kecepatan c = 3×108 meter/detik. Ketika memasuki medium tertentu (dielectric atau nonconducting) gelombang berjalan dengan suatu kecepatan v, yang mana adalah karakteristik dari bahan dan kurang dari besarnya kecepatan cahaya itu sendiri (c). Perbandingan kecepatan cahaya di dalam ruang hampa dengan kecepatan cahaya di medium adalah indeks bias n bahan sebagai berikut : n = c⁄v

Optika klasik

Sebelum optika kuantum menjadi penting, asarnya terdiri dari aplikasi elektromagnetik klasik dan pendekatan frekuensi tinggi untuk cahaya. Optik klasik terbagi menjadi dua cabang utama: optika geometris dan optika fisis.

Optika geometris, atau optika sinar, menjelaskan propagasi cahaya dalam bentuk "sinar". Sinar dibelokkan di antarmuka antara dua medium yang berbeda, dan dapat berbentuk kurva di dalam medium yang mana indeks-refraksinya merupakan fungsi dari posisi. "Sinar" dalam optik geometris merupakan objek abstrak, atau "instrumen", yang sejajar dengan muka gelombang dari gelombang optis sebenarnya. Optik geometris menyediakan aturan untuk penyebaran sinar ini melalui sistem optis, yang menunjukkan bagaimana sebenarnya muka gelombang akan menyebar. Ini adalah penyederhanaan optik yang signifikan, dan gagal untuk memperhitungkan banyak efek optis penting seperti difraksi dan polarisasi. Namun hal ini merupakan pendekatan yang baik, jika panjang gelombang cahaya tersebut sangat kecil dibandingkan dengan ukuran struktur yang berinteraksi dengannya. Optik geometris dapat digunakan untuk menjelaskan aspek geometris dari penggambaran cahaya (imaging), termasuk aberasi optis.

Optika geometris sering disederhanakan lebih lanjut oleh pendekatan paraksial, atau "pendekatan sudut kecil." Perilaku matematika yang kemudian menjadi linear, memungkinkan komponen dan sistem optis dijelaskan dalam bentuk matrik sederhana. Ini mengarah kepada teknik optik Gauss dan penelusuran sinar paraksial, yang digunakan untui order pertama dari sistem optis, misalnya memperkirakan posisi dan magnifikasi dari gambar dan objek. Propagasi sorotan Gauss merupakan perluasan dari optik paraksial yang menyediakan model lebih akurat dari radiasi koheren seperti sorotan laser. Walaupun masih menggunakan pendekatan paraksial, teknik ini memperhitungkan difraksi, dan memungkinkan perhitungan pembesaran sinar laser yang sebanding dengan jarak, serta ukuran minimum sorotan yang dapat terfokus. Propagasi sorotan Gauss menjembatani kesenjangan antara optik geometris dan fisik.

Optika fisis atau optika gelombang membentuk prinsip Huygens dan memodelkan propagasi dari muka gelombang kompleks melalui sistem optis, termasuk amplitudo dan fase dari gelombang. Teknik ini, yang biasanya diterapkan secara numerik pada komputer, dapat menghitung efek difraksi, interferensi, polarisasi, serta efek kompleks lain. Akan tetapi pada umumnya aproksimasi masih digunakan, sehingga tidak secara lengkap memodelkan teori gelombang elektromagnetik dari propagasi cahaya. Model lengkap tersebut jauh lebih menuntut komputasi, akan tetapi dapat digunakan untuk memecahkan permasalahan kecil yang memerlukan pemecahan lebih akurat.

Animasi konsep dispersi cahaya pada prisma.

Topik yang berkaitan dengan optik klasik

    Bilangan Abbe
    Aberasi
    Cahaya
    Difraksi
        Difraksi kisi-kisi
    Dispersi
    Distorsi
    Fabrikasi dan pengujian (komponen optis)
    Hukum Snellius
    Koherensi
    Persamaan Fresnel
    Prinsip Fermat
    Prinsip Huygens
    Optik Fourier
    Optik geometris dari:
        Lensa
        Cermin
        Instrumen optis
        Prisma

   Optik indeks gradasi
    Sejarah optik
    Interferometri
    Desain lensa optis
    Resolusi optis
    Fotografi (ilmu)
    Polarisasi
    Sinar
    Penelusuran sinar
    Pemantulan
    Pembiasan
    Penyebaran
    Spektrum
    Gelombang

Optika modern

Optika modern meliputi bidang ilmu dan rekayasa optik yang menjadi terkenal pada abad ke 20. Bidang-bidang ilmu optik ini biasanya berhubungan dengan elektromagnetik atau sifat kuantum dari cahaya tetapi tidak termasuk topik lain.
Topik yang berkaitan dengan optik modern

    Optik adaptif
    Dikroisme lingkar
    Optik kristal
    Optik difraksi
    Optik serat
    Panduan gelombang
    Holografi
    Optik terpadu

    Kalkulus Jones
    Laser
    Suar lensa
    Lensa mikro
    Optik non-imaging
    Optik taklinear
    Pengenalan citra optis
    Prosesor optis


    Pusaran optis
    Fotometri
    Fotonika
    Optik kuantum
    Radiometri
    Optik statistik
    Optik lapisan tipis
    Optik sinar-X

Optik sehari-hari

Optik adalah bagian dari kehidupan sehari-hari. Pelangi dan bayangan adalah contoh gejala optis. Banyak orang mendapat manfaat dari kacamata atau lensa kontak, dan optik digunakan di banyak barang konsumen termasuk kamera. Superimposisi dari struktur periodik, misalnya tisu transparan dengan struktur kisi, menghasilkan bentuk yang dikenal sebagai pola moiré. Superimposisi dari pola periodik transparan yang terdiri garis atau kurva buram paralel memproduksi pola garis moiré.
Bidang optik lain

    Ilmu warna
    Pengolahan citra
    Teori informasi
    Pencahayaan
    Visi mesin


    Komunikasi optis
    Komputer optis
    Penyimpanan data optis
    Umpan balik optis


    Pengenalan pola
    Transfer panas radiatif
    Fisika panas
    Sistem visual

Lihat pula

    Sejarah optik
    Daftar topik optik
    Publikasi penting dalam bidang optik

    Transparensi
    Ilusi optis
    Optics, buku oleh Ptolemy

    Optisian
    Teleskop optis
    Perawatan Anti kabut

Masyarakat

    Optical Society of America

    SPIE - The International Society for Optical Engineering

    European Optical Society

Referensi

    Born, Max;Wolf, Emil. Principles of Optics (7th ed.). Pergamon Press, 1999.
    Hecht, Eugene (2001). Optics (4th ed.). Pearson Education. ISBN 0-8053-8566-5.
    Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7.
    Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 0-7167-0810-8.
    Lipson, Stephen G. (1995). Optical Physics (3rd ed.). Cambridge University Press. ISBN 0-5214-3631-1.



Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Untuk buku oleh Sir Isaac Newton, lihat Opticks.


Rating: 5

0 komentar: